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Resonant Modes of a Dielectric Rod Resonator
Short-Circuited at Both Ends by
Parallel Conducting Plates

YOSHIO KOBAYASHI, MEMBER, IEEE, AND SHUZO TANAKA, SENIOR MEMBER, IEEE

Abstract—This paper describes a generalized study for the resonant
modes of a dielectric rod resonator placed between two parallel conducting
plates. Dielectric and conductor losses are ignored. It is shown that there
are two resonant states in this resonator, trapped and leaky states. In order
to determine the cutoff and resonant frequencies in the trapped state,
numerical results are given for the cutoff conditions and dispersive char-
acteristics of a dielectric rod waveguide. The field patterns for the hybrid
modes are also presented. For the resonant modes in the leaky state, it is
shown to be useful to introduce a complex angular frequency. Numerical
results are given for the various modes with different values of the
dielectric constant, Generalized mode charts covering both states and
including the cutoff conditions are presented. The existence of both states
has been verified by experiments.

I. INTRODUCTION

HIS PAPER discusses the resonant modes of the

dielectric rod resonator shown in Fig. 1. Here, a
cylindrical dielectric rod having relative dielectric con-
stant ¢,, diameter D, and length L is placed between two
infinite parallel conducting plates. Dielectric and conduc-
tor losses are ignored. The configuration is important for
applications such as the precise measurement of high-¢,
materials [1]-[5], and the design of waveguide Y-junction
circulators containing full height ferrite rod [6].

It is well known that trapped and leaky waves propa-
gate along a dielectric rod waveguide [7]-[9] and along
other surface wave lines [10], [11]. By analogy with this,
we assert in this paper that there are two resonant states
in this resonator, trapped and leaky states. In the trapped
state, the energy is confined in and near the rod; the
unloaded quality factor @, is infinite. On the other hand,
in the leaky state a part of the energy leaks away from the
resonator in the radial direction; the Q,, value is finite due
to the radiation loss even in the lossless structure.

In order to determine the cutoff and resonant frequen-
cies in the trapped state, we first present numerical results
for the cutoff conditions and dispersive characteristics of
the dielectric rod waveguide. The field patterns for the
hybrid modes are also calculated using these results. These
calculations are based on the analysis by Snitzer [12].
Secondly, the solutions in the leaky state are calculated
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infinitely large conducting plates

Fig. 1. A cylindrical dielectric rod resonator placed between two paral-
lel conducting plates.

numerically by introducing a complex angular frequency.
The same approach has been applied by Gastine et al.
[13], to the analysis for a spherical dielectric resonator.
Thirdly, generalized mode charts covering both states and
including the cutoff conditions are presented. The mode
charts presented previously [3], [5], [14], [15] include only
the resonances in the trapped state. Finally, experimental
results for the resonators are discussed to confirm the
validity of the theory.

1I. CHARACTERISTIC EQUATIONS OF RESONANT
MOoODEs

If we choose a cylindrical coordinate system r, 8, z as in
Fig. 1 and assume a time factor exp’*’, where w is the
angular frequency, then the characteristic equation for the
resonant modes HE,,,, and EH,,,, is given by [16]

2 2 212 1 1 2
[ E(u)+M,(0) ][ K2E,(u) +K2M,(0) | =nh (———)

u?  o?

(1
where
T(w) HO'(v)

F(u)=—"—~  M/(v)=——1% 2
(1) () (0) HO(0) (2

D D ,
=Zyki-r o= Td-n (3)
PN @
h=2T=T =012, (5)
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J,(u) is the Bessel function of the first kind and H?(v) is
the Hankel function of the second kind. The prime above
a cylinder function denotes differentiation with respect to
the argument. Also, ¢ is the light velocity in free space,
and A, is the guiding wavelength of the dielectric rod
waveguide. Equation (5) holds since the resonance occurs
when L=IA_/2. In the case of either n=0 or /=0, partic-
ularly, (1) reduces to two equations: for the TE,,,, (n=0)
and TE,, , (/=0) modes

E(u)+M,(v)=0
and for the TM,,,, (n=0) and TM,,,,,, (/=0) modes
€ F,(u)+M,(v)=0. (7

In addition, the TE,,,, mode disappears since it violates
the short-circuit boundary conditions at both ends of the
resonator. The designation of the resonant modes de-
scribed above is based on that of the dielectric waveguide
modes proposed by Snitzer [12]. The mode subscripts
n, m, [ are positive integers; the first two denote the wave-
guide mode, while the third one denotes the number of
the field variations along z direction. The mode subscript
0 denotes no field variation.

In this resonator two states of the resonances should be
considered. First, when u is real and v is imaginary in (3),
that is, Ve, >(Ag//2L)>1 with the free-space wave-
length A, corresponding to the resonant frequency f,, the
resonances are in the trapped state. The state of Ay//2L=
1, particularly, is calied cutoff as is done for the dielectric
waveguide. In this case the second equations in (2) and (3)
reduce to

(6)

K, (w)

Mn(—jw) = m—)—

®)

v=—jw= —-jg h*—k32 9
where K, (w) is the modified Bessel function of the second
kind with the real argument w. Secondly, when 1>
(Agl/2L)>0, the resonances are in the leaky state. The
T™, .o modes are always in the leaky state since /=0.
Equations (1), (6), and (7) can be solved by introducing a
complex angular frequency w

Wy

w=w1+jw2=w1(1+j——l—), Q= 5—
20, W,

(10)

where w,; and w, are both positive for the so-called damped
free oscillation, and Q; is its quality factor [17]. Then u
and v are both complex. Putting v=1v, +v,, we obtain the
following relation from the imaginary part of the second
of (3):

W,y

> (D/2)?

Since v, is positive for the wave travelling in the r direc-
tion, v, is positive by (11). Therefore it is sufficient here to
examine only the first quadrant of the complex v plane.
From the above discussion it follows that for a given real

01‘02

=0. (11)
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h value, w which is determined from the characteristic
equation is real in the trapped state and is complex in the
leaky state. This is in contrast with the case of the dielec-
tric waveguide where for a given real  value, the propa-
gation constant 4 determined is real in the trapped wave
and is complex in the leaky wave [7]-[11].

III. CALCULATIONS OF TRAPPED WAVE OF A
DIELECTRIC ROD WAVEGUIDE

As the basic investigation for understanding the reso-
nant behavior in the trapped state, a systematic study was
made of the trapped waves for the dielectric rod wave-
guide. The results will be described below.

A. Cutoff Condition

At the cutoff of the trapped wave, w=0 and A_/A =L
where A, is the cutoff wavelength; hence the first of (3)
becomes u,=(7wD/A,)Ve,—1 . Define X and Y as

D u, 1 1

=-A— €r=——~*———— Y=
¢ T Vi-7? Ve,

where u, values are given by the tollowing cutoff condi-
tions [12]:

(12)

HE,;: u.=0
TE,,, and TM,,,: Jo(u.)=0
EH,,,and HE, , . ;: J;(u, )=0
EH,, (n=2.3,"-): J,(u,)=0
J,_(u,)
HE =2,3,-+-): 2 el o (p—1 1.
o (1 )i P = (e~ 1)

(13)

The relationship between X and Y for each mode, calcu-
lated from (12) and (13), is shown in Fig. 2, which
constitutes a complete set of the trapped waves. With
reference to Fig. 2, this verification can be made as
follows. The cutoff for the TE,, and TM,, modes starts
from the point X=0.765 and Y=0; as Y->1, it approaches
to the HE,; cutoff; furthermore, as Y—0, the latter
reaches the EH,, and HE, cutoff; continuously, as Y—1,
the latter approaches to the HE,, cutoff; repeating the
above procedure, we obtain a sequence of the modes for
m=1. Similarly we get another sequence for m=2 starting
from the point X=1.76 and Y=0, and a sequence for
m=m, generally, starting from the point X = (the mth root
of Jy(u.)=0)/7 and Y=0. Table I summarizes these re-
sults. The cutoff for the HE|; mode is specially considered
and added to the modes in Table I. The necessary X value
is readily determined from Fig. 2 for each mode with
givene,.

B. Solutions of Characteristic Equations

In order to calculate the hybrid modes, it is convenient
to introduce a function P defined by Snitzer [12], which
represents the amount of the field component H, relative
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Fig. 3. Dispersion relation for the trapped waves of a dielectric rod
waveguide in the cases of €,= 10 and 100.

TABLE1
CLASSIFICATION OF TRAPPED WAVES BY MEANS oF CUTOFF
CURVES
X at v=0] ¥=0 —py¥=1 4—» ¥=0 —Ppy=1—p¥Y=0 -p¥=1 p¥=0 P ¥=1
m=1l} 0.765 TEOI’TMOl HEZl EHll,HE12 HEBl EH21 HE41 EH31 HESl
m=2| 1.757 TEOZ,TMO2 HEZZ Ele,HE13 HE32 EHZZ HE42 EH32 HE52
m=m uc/ﬂ* TEOm'TMOm HEZm EHlm'HElm+l HE3m EHZm HEdm EHBm HESm
* u, is the m'th root of Jo(uc)=0.

to that of E,. Then we rewrite (1) as follows:
,,(L + L) ,
_ "t BEw) M)
F +M(—j
n(u) n( jW) nh2(i o+ L)
u?  w?

The dispersion relations for the trapped waves were
calculated numerically using (6), (7), and (14) together
with (8) and (9). Results for several modes with €, =10
and 100 are shown in Fig. 3 by the solid lines. The broken
lines in Fig. 3 indicate the cutoffs in the range €, > 10,
taken from Fig. 2. Furthermore, the P values for €, =10
are plotted in Fig. 4. With reference to Fig. 4, it is found

(14)
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Fig. 4. The values of P versus Ao/A, for the hybrid modes in the case

of ¢,=10. (a) HE,,,,, mode. (b) EH,,,, mode.

that for the HE mode the TM mode is predominant since
| P|< 1 and for the EH mode the TE mode is predominant
since | P|>1[15].

C. Field Patterns for Hybrid Modes

Fig. 5 shows the field patterns of the hybrid modes for
the fixed values of €,=10 and A,/A,=2.6. They were
calculated from the equations given in reference [12, eq.
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Fig. 5. Field patterns for the hybrid modes of a dielectric rod wave-
guide when €,=10 and Ay/A,=2.6. —— Electric field line. «-----
Magnetic field line.

(17)], together with the values of P and D/\, given in
Figs. 3 and 4. The transverse view is in the plane where
E,=H,=0. The patterns only inside the rod are presented
for all the modes except the HE,, mode. It should be
noted that the curvature of the field lines for the HE,
mode is the opposite direction to that commonly assumed,
e.g., [16]. This fact has been recognized by Nagelberg and
Hoffspiegel [18].

The field patterns for the HE,,, and EH,,,, modes have
a strong resemblance to those for the TM,,,, and TE,,,
modes in an assumed magnetic-wall waveguide, respec-
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Fig. 6. Region of negative power flow for HE|; mode when €, =10 and
Ao/A,=2.6.

tively [19]. Furthermore, interchanging the electric and
magnetic field lines in the latter waveguide modes, we get
the familiar metallic-wall waveguide modes TE,, and
T™,,,.., respectively. Thus, these three types of the wave-
guide modes can be explicitly correlated one another.
From this point of view, the mode designation by Snitzer
[12] is more reasonable than that by Kikuchi and
Yamashita [20].

Fig. 6 shows a detail of the upper part of the HE,
mode pattern. In the figure arrows on the field lines are so
directed that the Poynting vector N=E X H points in the
positive z direction. In the region enclosed by the dot-
dash-line, however, NV points in the negative z direction.
This phenomenon for the negative power flow has been
found by Gillespie [21]. Furthermore it has been found
that the phenomenon for the HE,, mode appears in the
range 1.23<A,/A,<2.99 when €, =10 [22] and disappears
everywhere if €, < 7.34 [23].

The field patterns in Fig. 5 are applicable to those for
the resonant modes without modification, if we note that
the electric and magnetic field lines are 90° out of phase
with each other both in time and in space along z axis.

IV. TM,,,, LEAKY STATE MODES

Using the formula xZ;(x)= —nZ,(x)+xZ,_,(x) where
Z,(x) is J(x) or HP(x), we can rewrite (7) for the
T™,,,,,, mode as follows:

J1(u) Hrsz—)l(v)
u =p
J(u)  HP(o)
where it follows from (3)~(5), and (10) that

Dw wD
u=Ve v —%—A—O(

(15)

o1
1+12Qf) Ve (16)
and ¥ and § are the amplitude and phase of the complex
number v, respectively. For fixed values of n and «,, (15)
was solved for v by a computer with the subprogram of
the complex Bessel functions [24]. Let V,,,/6, be the
solution for the TM,,,,, modes; then the resultant values
of u,, and Qy,,, given by

D _ —
Uym= %— € = Ve, I/nm cos onm
0

1
anm= E cot 0nm

(17)
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Fig. 7. The values of u,,, for TM,,,, leaky state modes.

are shown in Figs. 7 and 8. The solutions in the range
€,<1.3 are presented for the four lowest-order modes
only.

As €,—1, asymptotic solutions u
Appendix)

1
nm

are given by (see

u

n

2n+1
i =
-~ (18)

and are indicated in Fig. 7 on the left ordinate. It is found
from (18) that the TM,,,,, modes specified by the follow-
ing suffices (n, m) are degenerate at ¢,=1; ie., (n,1),
(n—2,2),(n—4,3),"++, and (n—2m—2,m)with n—2m—2
> 0. In the case of n=35, for example, the TMy,5, TMyy,
and TM,,, modes are degenerate at €, =1 and have same
values of u=8.639. Also, asymptotic solutions u2, as
€,—o0 are given by (see Appendix)

Jn—l(u:om)=0 (19)

which are indicated in Fig. 7 on the right ordinate. The
TMy, 41,0 and TM,,,, modes are degenerate in the limit
of €,—00. On the other hand, the different form has been
commonly used so far, which is derived under the mag-
netic-wall assamption [25] and is given by

Ji(x)=0.

+m——1)77

(20)

In the case of n=0, (19) and (20) happen to coincide. For
all modes with n> 1, however, (19) provides much better
approximation compared with (20) when ¢, is high; e.g,,
for the TM,,, mode with ¢,= 100, the errors of (19) and
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Fig. 8. The values of Q,,, for TM,,,q leaky state modes.

(20) are 1.5 and 22 percent, respectively. Furthermore, it
has been found [6] that the treatment is applicable to the
design of the waveguide Y-junction circulator. With the
reference to Fig. 8, the Q, values increase with the in-
crease of €, or n, but decrease with the increase of m.

V. Mobe CHART COVERING BOTH STATES

Fig. 9 shows a mode chart for the resonator illustrated
in Fig. 1, including the trapped state modes, their cutoff
conditions, and the TM,,,,, leaky state modes. The be-
havior below the cutoff of the resonant modes, i.c., that in
the leaky state, will be discussed in Section VI. We choose
€,(D/\,)? as ordinate and (D /L)* as abscissa. This choice
of the coordinate axes permits us to use the chart for the
resonators with the different ¢, values [4], [5], [15], [24].
Examining the characteristic equation (1), we find that a
solution, €,(D/A,)?, obtained for given values of n, m,¢,,
depends on the value of (I//2)*(D/L)* Therefore the
solutions for /> 2 can be readily found out from that for
/=1. This relation holds for a pair of the leaky state
solutions, €,(D/A,)* and @y, too.

For the trapped state modes, the curves were plotted
using Fig. 3 and the following relation:

2
2 Yoz A 2
(-5 ()
L A Ve, 0
The solid lines are for ¢,= 10 and the broken lines are for
¢,=100. The other modes existing in the upper-left region
of the HE,; mode are omitted in the chart.

The cutoffs of the trapped state modes, depending on
the €, value, can be expressed from (12) and (21) as

S2) (Y (2N

) 22)

@1)
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cutotf condition for 1=1
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Fig. 9. Mode chart for a dielectric rod resonator short-circuited at the both ends.

Furthermore, the first of (22) subtracted by the second

(2] =(3) (2) (%)

c

(23)

which represents the straight line if u_ is independent of
¢,. Equation (22) for the HE,,, (n > 2) modes and (23) for
the other modes, in the cases of /=1 and 2, are illustrated
in Fig. 9 by the dotted lines. On the other hand, the first
of (22) divided by the second yields another relation as

follows:
DY 1\} D\

(r) “‘r(a) (z);
This represents a straight line which intersects the origin
and has the slope of (//2)%,. Only the ¢, values satisfying
(24) for /=1 are indicated on the top of the chart, while
the straight lines are not drawn. In the chart we can
determine the cutoffs for /=1 and given ¢, as follows;
draw a straight line that connects the origin and the point
€, on the top of the chart: the intersections of this line and
the dotted lines for /=1 give the cutoffs for the corre-
sponding modes. In addition, the cutoff points for all the
modes with the different integers of only / lie on a straight
line parallel to the abscissa.

The TM,,,,, leaky state modes are indicated in the chart
by the straight lines parallel to the abscissa, plotted using
the relation €,(D/Ay)*=(u,,/m)* with the u,, values
given in Fig. 7. The parts beyond the arrows are omitted
to avoid the confusion. If necessary, we can readily extend
these lines.

(24)

In the following we describe how to use the chart.
When 100>¢.> 10, we can use it by interpolating be-
tween two curves for €, =10 and 100. When ¢, > 100, the
use of the curves for ¢,=100 still provides a good ap-
proximation. Particularly in the vicinity of the cutoffs, the
cutoff conditions described above should be taken into
account. These considerations also permit us to use it even
the the case of €,<10. When the TE,, resonator is
fabricated, for example, of the material of €, =2, the TE,,,
cutoff condition requires us to use a rod having a size
ratio of (D/L)>1.55. Furthermore, for the permittivity
measurement using the TE,,,, mode [1]-[5], special atten-
tion should be paid to determine the sample size; e.g., for
€,> 10, the use of (D/L)?==3 should be avoided, because
the leaky state modes TM,, and TM,,, having the low
Q values exist near the TE;; mode and disturb its fields.

VL

Fig. 10 shows the most generalized mode chart for
€,=10, covering both states and including the cutoff
conditions. The trapped and leaky state modes are indi-
cated by the light and heavy lines, respectively, The dotted
lines are for the cutoffs. For the leaky state modes with
{70, the numerical solutions were obtained from (1) to (7)
together with (10), by an approach similar to that for the
T™,,,., modes. For the other modes the curves were
plotted from Fig. 9.

With decreasing (D/L)?, for all the modes except the
TM,,,.c and HE,,, modes the transitions from the trapped
state to the leaky state occur at the cutoff points, as shown
in Fig. 10(a), and their Q; values decrease monotonically

TRANSITIONS FROM TRAPPED-TO-LEAKY STATE
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Fig. 10. The most generalized mode chart for ¢,=10, covering both
states and including cutoff conditions.

in the leaky state, as shown in Fig. 10(b). At (D/L)*=0
the TM,,,,; and HE,,, (n>2) modes coincide with the
TM, ,,o modes, while the TE,,,, and EH,,, modes coin-
cide with the TE,,,, modes, because it is obvious from )
that the infinite length L corresponds to /=0. Also, the
TE,,,; modes coincide with the TM,,,,, modes at (D/L)?
=0 since the TM,,,,y and TE,),,, modes are always degen-
erate.

On the other hand, no transition of the HE,,, trapped
state mode into the leaky state was found from the calcu-
lation, while a distinct resonance which has the extremely
low Q, value and coincides with the TM,;,, mode at
(D/L)*=0 was found, as shown in Fig. 10. We call it
HE’;, mode. Results calculated for ¢,=16, 36, and 100
also showed the similar behavior for the HE,,, and HE,,
modes. From these results it is expected that the HE,,,
modes are always in the trapped state.

VIIL

The experiments for the resonant modes were carried
out to verify the theory described above. The first resona-
tor used was fabricated of a (Zr—Sn)TiO, ceramic rod of

EXPERIMENTAL VERIFICATION

Theoretical values of %, and Oy In Fig.7,8,and § . ’
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Fig. 11. Experiment for the identification of the resonant modes when
€,=37.08, D=8.504 mm, and L=4.680 mm, where PTC=power
transmission coefficient.

D=8.504 mm and L=4.680 mm placed between two
copper plates of 40 mm in diameter. This material has
€,=37.08 and tan §=1.6x10"* at 7.6 GHz. These values
were measured using the TE;; mode. In order to reduce
the air-gap effect on the resonant frequencies, small air
gaps at the rod—plate interfaces were filled up with the
least amount of water, whose dielectric constant is known
nearly equal to that of the rod at microwave frequency.
The frequency response of the transmission-type resonator
was measured: using a network analyzer. The result is
shown in Fig. 11. Two coupling loops, each of which
consists of a semirigid coaxial cable of the diameter 2.2
mm having a small loop at the top, were used to excite
and detect both H, and H, components of the resonant
fields. The theoretical values of f; and Q, estimated from
Figs. 7, 8, and 9 are also indicated in Fig. 11. They are in
good agreement with all the measured resonant peaks but
the first one at 3.07 GHz. The first peak may be desig-
nated as the TM,,, mode with the theoretical value of
Jo=1.4 GHz, because it is known [17] that the difference
between the resonant frequency for a forced oscillation
and that -for a damped free-oscillation increases with
lower Q; value. Furthermore the measured unloaded Q,
values for the TM,,,,,, leaky state modes are in fairly good
agreement with the theoretical Q, values in spite of the
finite size of the conductor plates used here.

Second, in order to investigate the behavior in the
vicinity of the cutoff for the TE,,, mode, two resonators
having the same diameters of D=4.99 mm and the differ-
ent length were fabricated of the same materials as used
above. In this experiment two coupling loops were ori-
ented at right angle to each other to suppress the coupling
strengths to the HE,;, modes appearing near the TE,,,
mode. The experimental results for both resonators are
shown in Fig. 12(a) and (b). The resonant peaks were
identified using the mode chart for €,=36, shown in Fig.
12(c). For L=18.91 mm or (D/L)*=0.0696, the TE,,
mode is in the trapped state and has the measured Q,
value of 3500, as shown in Fig, 12(a), while for L=20.92
mm, or (D/L)*=0.569, the TE,,, mode is in the leaky
state and its Q, value decreases to 220 due to the radia-
tion loss, as shown clearly in Fig. 12(b). Though the
similar behavior for the TM,;; mode was expected, the
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Fig. 12. Experiment of the identification of the resonant modes when
€,=37.08 and D=4.99 mm, where PTC=power transmission coeffi-
cient. (a) L=18.91 mm. (b) L=20.92 mm. (c) Mode chart for €,=36.

evidence was not observed because of the poor mode
separations, as shown in Fig. 12.

APPENDIX

ASYMPTOTIC SOLUTIONS FOR TM MobEs

nmO

In the case of €,—1, (16) is changed as follows:

N 1 1 Doy
u=op= 2cu(1+j2Qf), with u' = 7 (A1)

With reference to (Al), « is needed to be infinite because
of the physical consideration that Q,=0 as ¢,—1. Using
the approximations of J,(#) and H® (u) for large value of
argument u, we can obtain from (15) an asymptotic form

tan (u— 2n (A2)

+1 )_ _
a 7T )=j.
Furthermore, substitution (A1) into (A2) leads to

2n+1 )
ks

7 =0

tan (u“—

which yields (18).
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In the following, we treat the case of ¢,—~00. In order
that » has a finite value as €,—>o00, v must vanish since

u=Ve, v. Therefore an asymptotic value ¥ can be ob-
tained by solving (15) in the limit of v—0. When v—0, the
right-hand side of (15) is zero for every integer of n. This
calculation is straightforward, using the approximation of
H® (v) for small argument v. As a result, we obtain (19).
For n=0, the solution, ug; =0 can exist specially since
lin(l) (1) /Jo(u)=0. We call it TM;, mode.

U>
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Dielectric Loaded Elliptical Waveguides

SEMBIAM R. RENGARAJAN, MEMBER, IEEE, AND J. E. LEWIS, SENIOR MEMBER, IEEE

Abstract—Wave propagation in a metallic elliptic waveguide loaded
with a dielectric rod or a dielectric lining is investigated theoretically. The
mode spectrum for both slow and fast wave hybrid modes is obtained by
numerical solution of the characteristic equations. Correspondence is
established between the modes of the loaded and unloaded elliptical
waveguides. Typical field plots for _,HE,, and ,EH,, modes are pre-
sented. Power flow, power loss, and attenuation are obtained using a
perturbation method.

I. INTRODUCTION

HE DIELECTRIC loaded metallic elliptical wave-

guide has been shown to have application in accelera-
tion devices [1], and also as a microwave heating applica-
tor [2]. The study of metallic elliptical waveguides with
two dielectric media involves the solution of an infinite
determinantal equation. Veselov [3] derived the dispersion
equations of all modes in this waveguide. Cutoff frequen-
cies of some low-order modes, computed from a first-order
approximation to the characteristic equation have been
reported [4]-[7], while Rayevskiy et al. [8] have obtained
the field distribution of the dominant mode. The disper-
sion equation of the ,HE; mode has been studied [9]-[11]
for the special case of the phase velocity near the velocity
of light because of its application in electron accelerators.
The use of a second-order approximation to the dispersion
equation has been reported to yield improved accuracy in
the computation of cutoff frequencies and to reduce field
mismatch errors [10]. The mode spectrum and propaga-
tion characteristics of this waveguide have not been re-
ported previously.
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Fig. 1. Dielectric loaded elliptical waveguide and coordinate system.

In this work, the characteristic equations for fast and
slow wave modes are solved numerically using accurate
computer algorithms to obtain the mode spectrum. Propa-
gation characteristics of the dominant and some higher
order modes are studied theoretically, using a computa-
tional procedure similar to that employed in [12].

II. FieLp COMPONENTS

The geometry of interest is an elliptical metallic wave-
guide either lined with a dielectric layer or loaded with an
elliptical dielectric rod as shown in Fig. 1. The boundary
layer between the two dielectric regions is an elliptical
surface confocal with the metallic surface. This structure
can propagate only hybrid modes which may be either
slow or fast waves.

Omitting the t—z dependence, exp[ j(w?—Bz)], where 8
is the phase coefficient and w is the angular frequency, the
lossless axial field components in region i (i=1,2), for
even modes are

©
Ezi= 2 as,’;)Af,".)(g, qi)sem(n’ qi)
m=1

H,,= 2 b,(,,i)B,(ni)(g, qi)cem("”qi)

m=0

(1
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