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Abstract-This paperdescribes a generalized stndy for the reammnt

modes of a dielectric rod resonator placed between two psraflel conducting

plates. Dielectric and conductor losses are ignored. It is shown that there

are two resonant statea in tbfs resonator, trapped and leaky statea. In order

to determine the cutoff and resonant frequencies in the trapped sta~

nmnerfcaf resufts are given for the cutoff conditions and dkpersive ciuw-

acteristka of a dielectric rod waveguide. The field patterns for the hybrfd

modes are also praented. For the resonant modes in the leaky state, it is

shown to be useful to introduce a complex angular frequency. Nmnericaf

results are given for the various modes with different values of the

dfekctric comtant. Generalised mode charts covering both statea and

fncluding the cutoff conditions are presented. The existence of bath state9

bas been verified by experiments.

I. INTRODUCTION

T HIS PAPER discusses the resonant modes of the

dielectric rod resonator shown in Fig. 1. Here, a

cylindrical dielectric rod having relative dielectric con-

stant c,, diameter D, and length L is placed between two

infinite parallel conducting plates. Dielectric and conduc-

tor losses are ignored. The configuration is important for

applications such as the precise measurement of high-c,

materials [1 ]– [5], and the design of waveguide Y-junction

circulators containing full height ferrite rod [6].

It is well known that trapped and leaky waves propa-

gate along a dielectric rod waveguide [7]– [9] and along

other surface wave lines [10], [11]. By analogy with this,

we assert in this paper that there are two resonant states

in this resonator, trapped and leaky states. In the trapped

state, the energy is confined in and near the rod; the

unloaded quality factor QU is infinite. On the other hand,

in the leaky state a part of the energy leaks away from the

resonator in the radial direction; the QU value is finite due

to the radiation loss even in the lossless structure.

In order to determine the cutoff and resonant frequen-

cies in the trapped state, we first present numerical results

for the cutoff conditions and dispersive characteristics of

the dielectric rod waveguide. The field patterns for the

hybrid modes are also calculated using these results. These

calculations are based on the analysis by Snitzer [12].

Secondly, the solutions in the leaky state are calculated
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infinitely large conducting plates

Fig. 1, A cylindrical dielectric rod resonator placed between two paral-
lel conducting plates.

numerically by introducing a complex angular frequency.

The same approach has been applied by Gastine et al.

[13], to the aualysis for a spherical dielectric resonator.

Thirdly, generalized mode charts covering both states and

including the cutoff conditions are presented. The mode

charts presented previously [3], [5], [14], [15] include only

the resonances in the trapped state. Finally, experimental

results for the. resonators are discussed to confirm the

validity of the theory.

II. CHARACTERISTIC EQUATIONS OF RESONANT

MODES

If we choose a cylindrical coordinate system r, (3, z as in

Fig. 1 and assume a time factor exp~”f, where o is the

angular frequency, then the characteristic equation for the

resonant modes HEnml and EHnml is given by [16]

[ W)+wbo][ k:%(u)+k;f%(v) j =n’h’(+-3’
(1)

where

J;(u) H~2)’(v)
Fn(u)=—

d“(u)
M.(o)= – (2)

@q ~ )
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J.(u) is the Bessel function of the first kind and H~2J(o) is

the Hankel function of the second kind. The prime above

a cylinder function denotes differentiation with respect to

the argument. Also, c is the light velocity in free space,

and Ag is the guiding wavelength of the dielectric rod

waveguide, Equation (5) holds since the resonance occurs

when L= lAg/2. In the case of either n = O or 1= O, partic-

ularly, (1) reduces to two equations: for the TEO~l (n = O)

and TE.~O (1= O) modes

Fn(u)+fwn(o)=o (6)

and for the TMO~l (n=O) and TM~~O (1= O) modes

C,qz. z)+l?fn(o)=o. (7)

In addition, the TE ~~ O mode disappears since it violates
the short-circuit boundary conditions at both ends of the

resonator. The designation of the resonant modes de-

scribed above is based on that of the dielectric waveguide

modes proposed by Snitzer [12]. The mode subscripts

n, m, 1 are positive integers; the first two denote the wave-

guide mode, while the third one denotes the number of

the field variations along z direction. The mode subscript

O denotes no field variation.

In this resonator two states of the resonances should be

considered. First, when u is real and o is imaginary in (3),

that is, ~ > (Aol/2L ) >1 with the free-space wave-
length A. corresponding to the resonant frequency Jo, the

resonances are in the trapped state. The state of ~ol/2L =

1, particularly, is called cutoff as is done for the dielectric

waveguide. In this case the second equations in (2) and (3)

reduce to

q(w)
Mn(–jw)=

wK.(w)
(8)

:FV=–jw=–j— h –kz (9)

where K.(w) is the modified Bessel function of the second

kind with the real argument w. Secondly, when 1>

(A01/2L) >0, the resonances are in the leaky state. The
TM~~o modes are always in the leaky state since 1= O.

Equations (l), (6), and (7) can be solved by introducing a

complex angular frequency u

where Q~ and U2 are both positive for the so-called damped

free oscillation, and Qf is its quality factor [17]. Then u

and v are both complex. Putting o = o, +jo2, we obtain the
following relation from the imaginary part of the second

of (3):

U,(.O2 V1V2
—–—---=0.

C2 (D/2)2
(11)

Since 01 is positive for the wave traveling in the r direc-

tion, V2 is positive by (1 1). Therefore it is sufficient here to

examine only the first quadrant of the complex w plane.

From the above discussion it follows that for a given real

h value, u which is determined from the characteristic

equation is real in the trapped state and is complex in the

leaky state. This is in contrast with the case of the dielec-

tric waveguide where for a given real o value, the propa-

gation constant h determined is real in the trapped wave

and is complex in the leaky wave [7]– [ 11].

III. CALCULATIONS OF TRAPPED WAVE OF A

DIELECTRIC ROD WAmGUIDE

As the basic investigation for understanding the reso-

nant behavior in the trapped state, a systematic study was

made of the trapped waves for the dielectric rod wave-

guide. The results will be described below.

A. Cutoff Condition

At the cutoff of the trapped wave, w= O and Ac/Ag = 1,

where AC is the cutoff wavelength; hence the first of (3)

becomes u,= (~D/AC) ~ . Define X and Y as

where UC values are given by the i ullowing cutoff condi-

tions [12]:

HE,,: Uc=o

TEo~ and TMo~: .lO(uc)=o

EHl~ and HEI ~+1: Y,(uc)=o

EH~~(n=2,3,... ): J~(uC)=O

HE~~(n=2,3,... ): u Jn-2(~c)

c.in-l(~=)

=-(rz-l)(er -l).

(13)

The relationship between X and Y for each mode, calcu-

lated from (12) and (13), is shown in Fig. 2, which

constitutes a complete set of the trapped waves. With

reference to Fig. 2, this verification can be made as

follows, The cutoff for the TEO1 and TMO1 modes starts

from the point X= 0.765 and Y= O; as Y+ 1, it approaches

to the HE21 cutoff; furthermore, as Y~O, the latter

reaches the EHI, and HE 12cutoff; continuously, as Y+ 1,

the latter approaches to the HE31 cutoff; repeating the

above procedure, we obtain a sequence of the modes for

m = 1. Similarly we get another sequence for m = 2 starting

from the point X= 1.76 and Y= O, and a sequence for

m = m, generally, startingfrom the point ~ = (the ~th root
of Jo(uc) = 0)/z- and Y= O. Table I summarizes these re-

sults. The cutoff for the HE ~~ mode is specially considered

and added to the modes in Table I. The necessary X value

is readily determined from Fig. 2 for each mode with

given cr.

B. Solutions of Characteristic Equations

In order to calculate the hybrid modes, it is convenient

to introduce a function P defined by Snitzer [12], which

represents the amount of the field component Hz relative
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Fig. 3. Dispersion relation for the trapped waves of a dielectric rod
waveguide in the cases of c, = 10 and 100.

TABLE I
CLASSIFICATION OF TRAPPED WAVES BY MSANS OF CUTOFF

CuRvns

x at Y=o Y-O Y-1 Y= o Y-l —. Y-o Y=l .Y=o ● Y-l -

m=l 0.765 TEO1,TMO1 HE21 EH1l, HE12 HE31 EH21 HE41 EH31 HE51

m. 2 1.757
TE02’TM02 ‘4E22 ‘H12’HE13 ‘E32 EH22 ‘E42 ‘H32 ‘E52

m=m uc/n* ‘EOm’ ‘“Om ‘E2m ‘Him’ ‘Elm+l ‘E 3m ‘H 2m ‘E4m ‘H 3m ‘E 5m

● u= is the m,th root of JO(UC)=O.

to that of E=. Then we rewrite (1) as follows:

~= ‘b’+;)_k:Fn(zJ)+I@’fn( –jw)

Fn(u)+kfn(-jw) – ‘h’(+++’)“’14)
The dispersion relations for the trapped waves were

calculated numerically using (6), (7), and (14) together
with (8) and (9). Results for several modes with c, = 10

and 100 are shown in Fig. 3 by the solid lines. The broken

lines in Fig. 3 indicate the cutoffs in the range ●, >10,

taken from Fig. 2. Furthermore, the P values for c,= 10

are plotted in Fig. 4. With reference to Fig. 4, it is found
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Fig. 4. The values, of P versus AO/Ag for the hybrid modes in the cme

of c, = 10. (a) HEnm mode. (b) EHnm mode.

that for the HE mode the TM mode is predominant since

IP I <1 and for the EH mode the TE mode is predominant

since IPI >1 [15].

C. Field Patterns for Hybrid Modes

Fig. 5 shows the field patterns of the hybrid modes for

the fixed values of c,= 10 and AO/Ag = 2.6. They were

calculated from the equations given in reference [12, eq.
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Fig. 6. Region of negative power flow for HE1 ~mode when c, = 10 and
&JAg=2.6.

tively [19]. Furthermore, interchanging the electric and

magnetic field lines in the latter waveguide modes, we get

the familiar metallic-wall waveguide modes TE~~ and

TM~~, respectively. Thus, these three types of the wave-

guide modes can be explicitly correlated one another.

From this point of view, the mode designation by Snitzer

[12] is more reasonable than that by Kikuchi and

Yamashita [20].

Fig. 6 shows a detail of the upper part of the HE, ~

mode pattern. In the figure arrows on the field lines are so

directed that the Poynting vector N=Ex H points in the

positive z direction. In the region enclosed by the dot-

dash-line, however, N points in the negative z direction.

This phenomenon for the negative power flow has been

found by Gillespie [21]. Furthermore it has been found

that the phenomenon for the HE ~~ mode appears in the
range 1.23< AO/Ag <2.99 when c,= 10 [22] and disappears

everywhere if c, <7.34 [23].

The field patterns in Fig. 5 are applicable to those for

the resonant modes without modification, if we note that

the electric and magnetic field lines are 90° out of phase

with each other both in time and in space along z am.

IV. TM~~O LEAKY STATE MODES

Using the formula xZ;(.X) = – nZn(x) + xZn _ ~(x) where

I Zn(X) is J.(x) or H~2)(x), we can rewrite (7) for the

TM~~O mode as follows:
1

EH31

Fig. 5. Field patterns for the hybrid modes of a dielectric rod wave-
guide when e,= 10 and AO/Ag = 2.6. — Electric field line. . . . . . .
Magnetic field line.

(17)], together with the values of P and D/AO given in
Figs. 3 and 4. The transverse view is in the plane where

E== Hz= O. The patterns only inside the rod are presented

for all the modes except the HE1 ~ mode. It should be

noted that the curvature of the field lines for the HE ~~

mode is the opposite direction to that commonly assumed,

e.g., [16]. This fact has been recognized by Nagelberg and

Hoffspiegel [18].

The field patterns for the HE~~ and EH~~ modes have

a strong resemblance to those for the TM~~ and TE~~

modes in an assumed magnetic-wall waveguide, respec-

Jn_,(r.f) = q?,(o)

u Jn(u) v I@(o)

where it follows from (3)–(5), and (10) that

(15)

D(J ITD
U=<o __ —

‘= 2C – A. ()
1+JL

2Qf
= V,Z9 (16)

and V and O are the amplitude and phase of the complex

number o, respectively. For fixed values of n and c,, (15)

was solved for o by a computer with the subprogram of

the complex Bessel functions [24]. Let ~~~LO~~ be the

solution for the TMHmO modes; then the resultant values

of Unm and Qf~~ given by

u =~+=<<mcosenmnm Qfnm= ; cot enm
o

(17)
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Fig. 7. The values of U.m for TMnmO leaky state modes.

are shown in Figs. 7 and 8. The solutions in the range

c,< 1.3 are presented for the four lowest-order modes

only.

As ~,+ 1, asymptotic solutions u~m are given by (see

Appendix.)

(2n+l

)
u~m= ~+m-1 77 (18)

and are indicated in Fig. 7 on the left ordinate. It is found

from (18) that the TMn~o modes specified by the follow-

ing suffices (n, nn) are degenerate at e,= 1; i.e., (n, 1),

(n–2,2), (n-4,3), ”.”, and(n–2m–2, m)withn–2m–2

>0. In the case of n =5, for example, the TM5 10, TM320,

and TM ~30modes are degenerate at c, = 1 and have same

values of u= 8.639. Also, asymptotic solutions u~m as

c,+ m are given by (see Appendix)

Jn-,(w:m)=o (19)

which are indicated in Fig. 7 on the right ordinate. The

‘MO, m+ 1,0 and ‘“2m0 ‘odes are ‘egenerate ‘n ‘he litit

of c,+ m. On the other hand, the different form has been

commonly used so far, which is derived under the mag-

netic-wall assumption [25] and is given by

JJ(r.4)=o. (20)

In the case of n = O, (19) and (20) happen to coincide. For

all modes with n >1, however, (19) provides much better

approximation compared with (20) when ●, is high; e.g.,

for the TM1 lo mode with c,= 100, the errors of (19) and

0.1I I I J
1 10 10’

Er ‘d

Fig. 8. The values of Q,nm for TM.mo leaky state modes.

(20) are 1.5 and 22 percent, respectively. Furthermore, it

has been found [6] that the treatment is applicable to the

design of the waveguide Y-junction circulator. With the

reference to Fig. 8, the Qf values increase with the ~n-

crease of t, or n, but decrease with the increase of m.

V. MODE CHART COVERING BOTH STATES

Fig. 9 shows a mode chart for the resonator illustrated

in Fig. 1, including the trapped state modes, their cutoff

conditions, and the TMnmo leaky state modes. The be-

havior below the cutoff of the resonant modes, i.e., that in

the leaky state, will be discussed in Section VI. We choose

c,(D/AO)2 as ordinate and ( D/L)2 as abscissa. This choice

of the coordinate axes permits us to use the chart for the

resonators with the different e, values [4], [5], [15], [24].

Examining the characteristic equation (l), we find that a
solution, c,( D/Ao)2, obtained for given values of n, m, 6,,

depends on the value of (1/2)2( D/L)2. Therefore the

solutions for I >2 can be readily found out from that for

1=1. This relation holds for a pair of the leaky state

solutions, c,(D/A 0)2 and Qf, too.

For the tralpped state modes, the curves were plotted

using Fig. 3 and the following relation:

The solid lines are for e,= 10 and the broken lines are for

e,= 100. The other modes existing in the upper-left region

of the HE ~,3 mode are omitted in the chart.
The cutoffs of the trapped state modes, depending on

the e, value, can be expressed from (12) and (21) as

(22)
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Fig. 9. Mode chart for a dielectric rod resonator short-circuited at the both ends.

Furthermore, the first of (22) subtracted by the second

yields

(23)

which represents the straight line if UC is independent of

e,. Equation (22) for the HE n~, (n z 2) modes and (23) for

the other modes, in the cases of 1= 1 and 2, are illustrated

in Fig. 9 by the dotted lines. On the other hand, the first

of (22) divided by the second yields another relation as

follows :

(24)

This represents a straight line which intersects the origin

and has the slope of (1/2)2~r. Only the ~, values satisfying

(24) for 1=1 are indicated on the top of the chart, while

the straight lines are not drawn. In the chart we can

determine the cutoffs for 1= 1 and given c, as follows;

draw a straight line that connects the origin and the point

c, on the top of the chart; the intersections of this line and

the dotted lines for 1= 1 give the cutoffs for the corre-

sponding modes. In addition, the cutoff points for all the

modes with the different integers of only 1 lie on a straight

line parallel to the abscissa.

The TM~~O leaky state modes are indicated in the chart

by the straight lines parallel to the abscissa, plotted using

the relation ~,(D/AO)2 = (uJm)2 with the u~~ values

given in Fig. 7. The parts beyond the arrows are omitted

to avoid the confusion. If necessary, we can readily extend

these lines.

In the following we describe how to use the chart.

When 100> c, >10, we can use it by interpolating be-

tween two curves for c,= 10 and 100. When e,> 100, the

use of the curves for c,= 100 still provides a good ap-

proximation. Particularly in the vicinity of the cutoffs, the

cutoff conditions described above should be taken into

account. These considerations also permit us to use it even

the the case of t,< 10. When the TEO1 ~ resonator is

fabricated, for example, of the material of ~, = 2, the TEO1~

cutoff condition requires us to use a rod having a size

ratio of (D/L)> 1.55. Furthermore, for the permittivity

measurement using the TE ~~1 mode [1 ]– [5], special atten-

tion should be paid to determine the sample size; e.g., for

c,> 10, the use of (D/L) 2=3 should be avoided, because

the leaky state modes TM020 and TMZIO having the low

Qf values exist near the TEO1l mode and disturb its fields.

VI. TRANSITIONS FROM TRAPPED-TO-LEAKY STATE

Fig. 10 shows the most generalized mode chart for

c,= 10, covering both states and including the cutoff

conditions. The trapped and leaky state modes are indi-
cated by the light and heavy lines, respectively, The dotted

lines are for the cutoffs. For the leaky state modes with

1#0, the numerical solutions were obtained from (1) to (7)

together with (10), by an approach similar to that for the

TM~~O modes. For the other modes the curves were

plotted from Fig. 9.

With decreasing (D/L )2, for all the modes except the

TMnnO and HE ,~1 modes the transitions from the trapped

state to the leaky state occur at the cutoff points, as shown

in Fig. 10(a), and their Qf values decrease monotonically
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Fig. 10. The most generalized mode chart for e,= 10, covering both
states and including cutoff conditions.

in the leaky state, as shown in Fig. 10(b). At (D/L)2 = O

the TM oml and HE.~1 (n> 2) modes coincide with the

‘“nm? modes, while the TEO~l and EHn~l modes ~oin-
clde vnth.the TE”MO modes, because it is obvious from (5)

that the infinite length L corresponds to 1= O. Also, the

TEorn~ modes coincide with the TM ~~o modes at (D/L,)2

= O since the TM, ~. and TEo~o modes are always degen-

erate.

On the other hand, no transition of the HE121 trapped

state mode into the leaky state was found from the calcu-

lation, while a distinct resonance which has the extremely

low Qf value and coincides with the TMIIO mode at

(D/L)2 = O was found, as shown in Fig, 10. We call it

HE\21 mode. Results calculated for c,= 16, 36, and 100”

also showed the similar behavior for the HE121 and HE~21

modes. From these results it is expected that the HE ,~,

modes are always in the trapped state.

VIII. EXPERIMENTAL VERIFICATION

The experiments for the resonant modes were carried

out to verify the theory described above. The first resona-

tor used was fabricated of a (Zr– Sn)Ti04 ceramic rod of

FREQUENCV (G Hz )

Fig. 11. Experiment for the identification of the resonant modes when
Cr= 37.08, D= 8.504 mm, and L =4.680 rnnL where PTC = power
transmission coefficient.

D= 8.504 mm and L= 4.680 mm placed between two

copper plates of 40 mm in diameter. This material has

c,= 37.08 and tan 8= 1.6X 10-4 at 7.6 GHz. These values

were measured using the TEO1 ~ mode. In order to reduce

the air-gap effect on the resonant frequencies, small air

gaps at the rod–plate interfaces were filled up with the

least amount of water, whose dielectric constant is known

nearly equal to that of the rod at microwave frequency.

The frequency response of the transmission-type resonator

was measured using a network analyzer. The result is

shown in Fig. 11. Two coupling loops, each of which

consists of a semirigid coaxial cable of the diameter 2.2

mm having a small loop at the top, were used to excite

and detect both Hz and H@ components of the resonant

fields. The theoretical values of ~. and Qf estimated from

Figs. 7, 8, andl 9 are also indicated in Fig. 11. They are in

good agreement with all the measured resonant peaks but

the first one at 3.07 GHz. The first peak may be desig-

nated as the TM olo rnO~ with the theoretical value of

&= 1.4 GHz, because It N known [17] that the difference
between the resonant frequency for a forced oscillation

and that for a damped free-oscillation increases with

lower Q, value. Furthermore the measured unloaded QU

values for the TM~~o leaky state modes are in fairly good

agreement with the theoretical Qf values in spite of the

finite size of the conductor plates used here.

Second, in order to investigate the behavior in the

vicinity of the cutoff for the TEOI, mode, two resonators

having the same diameters of D= 4.99 mm and the differ-

ent length were fabricated of the same materials as used

above. In this experiment two coupling loops were olri-

ented at right angle to each other to suppress the coupling

strengths to the HE, II modes appearing near the TEol,

mode. The experimental results for both resonators are

shown in Fig,, 12(a) and (b). The resonant peaks were

identified using the mode chart for c,= 36, shown in Fig.

12(c). For L=: 18.91 mm or (D/L )2=0.0696, the TEOII

mode is in the trapped state and has the measured QU

value of 3500, as shown in Fig, 12(a), while for L= 20.92
mm, or (D/L)2 = 0.569, the TEO1 ~ mode is in the leaky

state and its Qw value decreases to 220 due to the radia-

tion loss, as shown clearly in Fig. 12(b). Though the

similar behavior for the TM o] I mode was expected, the



1084 IEEE TRANSACTIONS ON MICROWAVE THSORY AND TECHNIQUES, VOL. MTr-28, NO. 10, OCTOBER 1980

!j-
+“
lx

6 9

#REWEKy ! G Hz)

(a)

~
-
v. –
1-~

6 9

kGUEtNcy8( G Hz)

(b)

0.8

06

04

0 0,02 0.04 0C6 008 0,1o

(4)D*

(c)

Fig. 12. Experiment of the identification of the resonant modes when
e,= 37.08 and D= 4.99 mm, where PTC = power transmission coeffi-
cient. (a) L= 18.91 mm. (b) L= 20.92 mm. (c) Mode chart for 6,=36.

evidence was not observed because of the poor mode

separations, as shown in Fig. 12.

APPENDIX

ASYMPTOTIC SOLUTIONS FOR TM ~mO MODES

In the case of ●,+ 1, (16) is changed as follows:

() 1
u=o=~u] l+j —

2Q, ‘
with u’= ~. (Al)

With reference to (Al), u is needed to be infinite because

of the physical consideration that Qf= O as c,+ 1. Using

the approximations of J.(u) and H:) (u) for large value of

argument u, we can obtain from (15) an asymptotic form

( 2n+l
tan u –

)
—r =j.

4

Furthermore, substitution (Al) into (A2) leads to

( 2n+l
tan u]- —

4T )
=0

which yields (18).

(A2)

In the following, we treat the case of cram. In order

that u has a finite value as c,+m, o must vanish since

u= ~ o. Therefore an asymptotic value u~ can be ob-

tained by solving (15) in the limit of o~O. When o-+0, the

right-hand side of (15) is zero for every integer of n. This

calculation is straightforward, using the approximation of

H~2J (u) for small argument tr. As a result, we obtain (19).

For n= O, the solution, u:= O can exist specially since

lim uJl(u)/JO(u) = O. We call it TMOIO mode.
U+o
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Dielectric Loaded Elliptical Waveguides

SEMBIAM R, RENGARAJAN, MEMBER, IEEE, AND J. E, I.EWIS, SENIORMBMBER, IEEE

Abstract-Wave prqmgatfon fn a metaflic effiptic wavegufde loaded

with a dielectric rod or a dfektrfc fining k fnveatigated tbeoreticaffy. The

mode spectrum for Mb slow and fast wave hybrid modes is obtafned by

munerfcaf solution of the characteristic equations. Correspondence fs

eatablfahed between the nmdea of the loaded and onfoaded effipticai

wavegohk ~ieat field plots for . HEol and ~EHO1 motfea are pre

sented. Power flow, power I- and attenuation are obtained using a

perturbation method.

I. INTRODUCTION

T HE DIELECTRIC loaded metallic elliptical wave-

guide has been shown to have application in accelera-

tion devices [1], and also as a microwave heating applica-

tor [2]. The study of metallic elliptical waveguides with

two dielectric media involves the solution of an infinite

determinantal equation. Veselov [3] derived the dispersion

equations of all modes in this waveguide. Cutoff frequen-

cies of some low-order modes, computed from a first-order

approximation to the characteristic equation have been

reported [4]–[7], while Rayevskiy et al. [8] have obtained

the field distribution of the dominant mode. The disper-

sion equation of the .HE ~1mode has been studied[9]–[11]

for the special case of the phase velocity near the velocity

of light because of its application in electron accelerators.

The use of a second-order approximation to the dispersion

equation has been reported to yield improved accuracy in

the computation of cutoff frequencies and to reduce field

mismatch errors [10]. The mode spectrum and propaga-

tion characteristics of this waveguide have not been re-

ported previously.
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Fig. 1. Dielectric loaded elliptical waveguide and coordinate system.

In this work, the characteristic equations for fast and

slow wave modes are solved numerically using accurate

computer algorithms to obtain the mode spectrum. Propa-

gation characteristics of the dominant and some higher

order modes are studied theoretically, using a computa-

tional procedure similar to that employed in [12].

II. FIELD COMPONENTS

The geometry of interest is an elliptical metallic wave-

guide either lined with a dielectric layer or loaded with an

elliptical dielectric rod as shown in Fig. 1. The boundary

layer between the two dielectric regions is an elliptical

surface confoc,al with the metallic surface. This structure

can propagate only hybrid modes which may be either

slow or fast waves.

Omitting the t-z dependence, exp[j(tit – 8z)], where D

is the phase coefficient and @is the angular frequency, the

Iossless axial field components in region i (i= 1,2), fcjr

even modes arc

co

E=i= ~ a~)A#($, qi)sem(~, qi)
*=1

w

m=O

0018-9480/80/ 1000-1085$00.75 @1980 IIEEE


